Pedestrian Proximity Detection using RGB-D Data

Adam Tupper, Richard Green

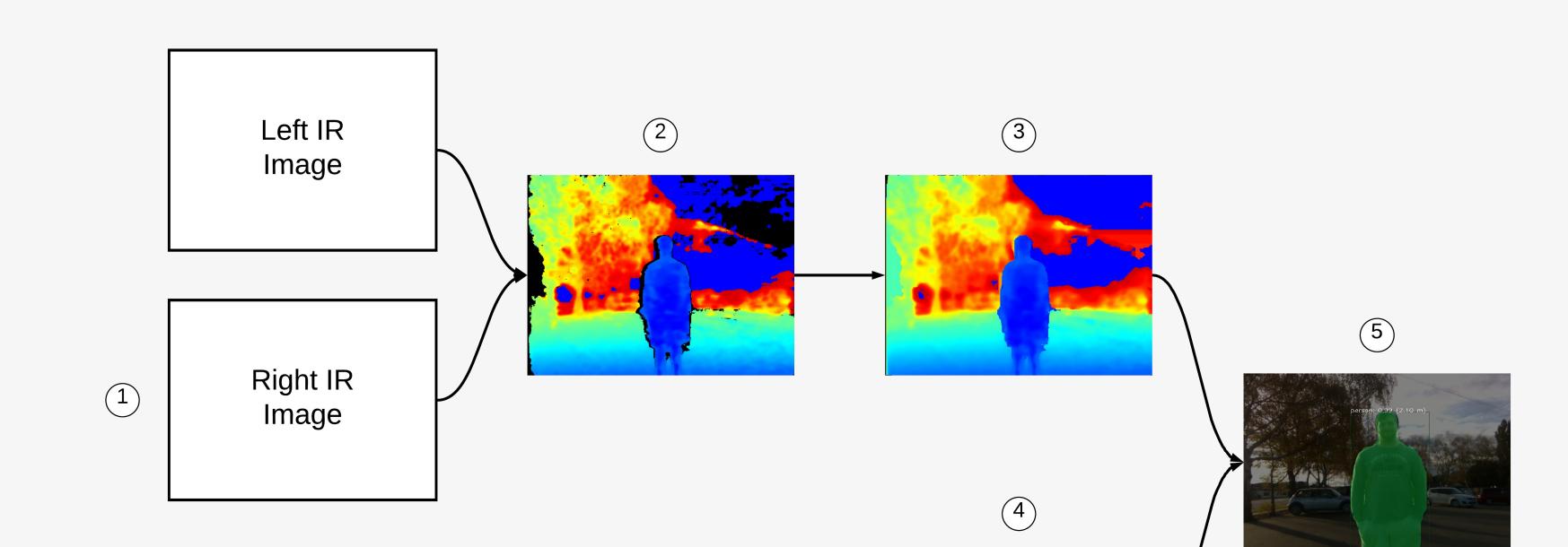
adam.tupper@pg.canterbury.ac.nz, richard.green@canterbury.ac.nz

Overview

In 2017, there were 39 pedestrian fatalities and 281 serious injuries as a result of vehicle-related accidents in New Zealand alone [1]. Furthermore, there were 243 workplace fatalities in New Zealand between 2010 and 2018 that were related to vehicles and machinery [2]. In total over 50% of all workplace fatalities over the same period were vehicle or machinery related [2]. These statistics highlight the need for increased safety measures for vehicles and machines operating in proximity to humans.

- We propose a method for detecting and monitoring the distance of humans from a machine within a narrow safety envelope using an RGB-D camera.
- Our approach uses human instance segmentation and infrared stereo vision to achieve this.

Method



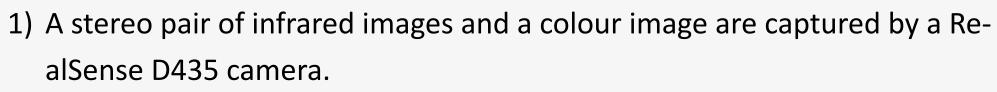
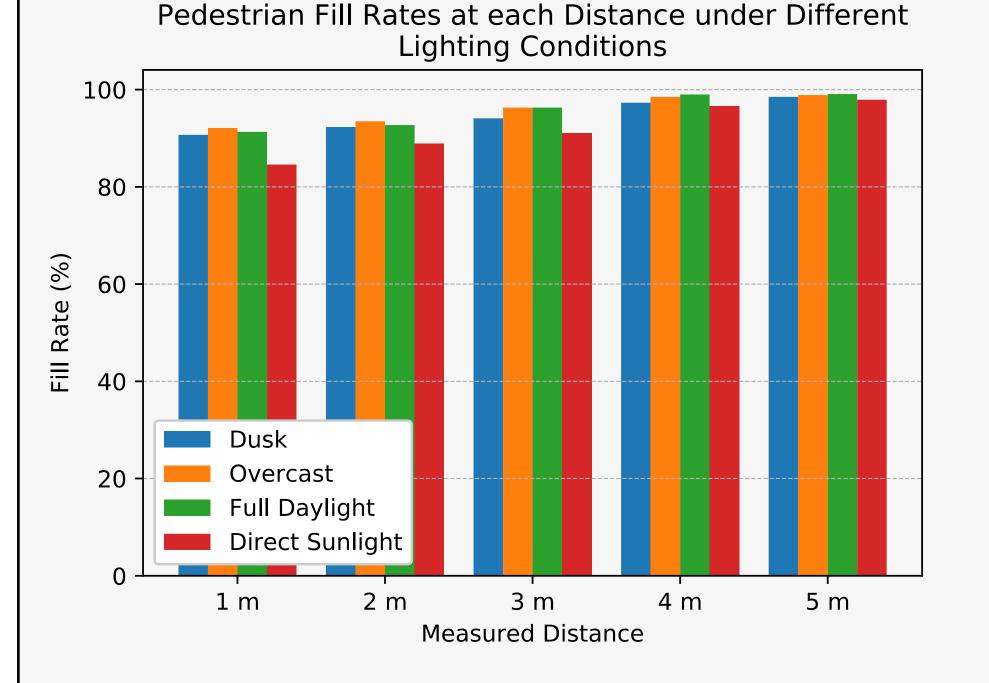


Figure 1: An example output for multiple pedestrians from our proposed method.

- 2) A depth map is computed using the pair of infrared images using the **Sem**iglobal Matching algorithm [3].
- 3) The depth map is post-processed using edge-preserving spatial filtering, spatial hole-filling and temporal filtering [4] to smooth depth noise while

preserving object edges and to fill holes in the depth map.

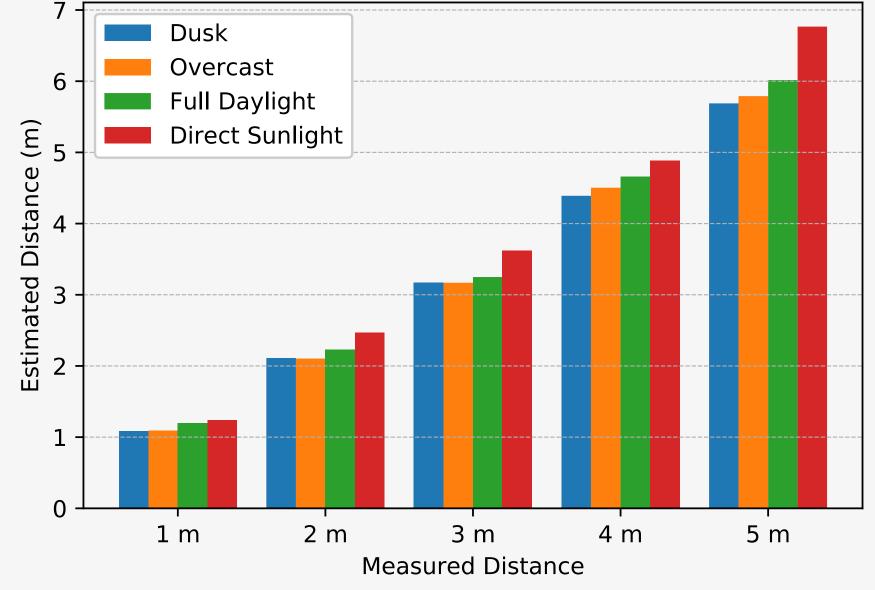

- 4) The colour image is passed through a Mask R-CNN human segmentation model, trained initially on the COCO dataset [5] and then refined on the Supervisely Persons dataset [6].
- 5) The instance masks for each pedestrian are overlaid onto the depth map and the median distance estimate for the identified region is computed.

Evaluation

• For each of the lighting conditions listed in Table 1, a person was placed at 1m intervals within the range of 1m to 5m.

Table 1: Lighting conditions tested in our system evaluation [12].		
Lighting Condition	Lux Range	
Dawn/Dusk	< 1000 lux	
Overcast	1000 - 10,000 lux	
Full Daylight	10,000 - 32,000 lux	
Direct Sunlight	> 32.000 lux	

Results


• For pedestrian segmentation, our model achieves an **AP**₅₀ score of **94.6%** on the Supervisely Persons dataset.

• The Supervisely Persons dataset contains 5722 images with 6884 fine instance-level annotations. These were split 70-30% for training and testing.

Figure 2: The coarse mask annotations included with the COCO dataset (left) compared to the fine mask annotations included with the Supervisely Persons dataset (right).

Estimated vs. Measured Pedestrian Distances under **Different Lighting Conditions**

- Only at distances of 1 m and 2 m in direct sunlight did the average fill rate fall below 90%.
- Our approach performs well across the full range of outdoor lighting conditions and distances, achieving an average distance estimate accuracy of 87.7%.
- Depth estimation degrades with distance and brightness.
- The degradation with distance can be explained by the reduced disparity between the left and right images at greater distances from the camera.
- The degradation with brightness can be explained by increase in infrared interference.

Conclusions & Future Work

- We present a new method for detecting pedestrians and estimating their distances using RGB-D data, based on Mask R-CNN [7] and the depth information captured using an infrared stereo Intel RealSense D435 camera.
- Unlike previous methods tested in only controlled indoor environments [8, 9, 10, 11], our approach performs well across the full range outdoor lighting conditions and distances.
- Our method shows promise for use in automated and assistive driving technologies, and for monitoring dy**namic safety envelopes** around industrial, agricultural or construction equipment.

• Avenues for future work include:

- Harnessing **depth data for segmentation**
- Investigating methods for increasing distance estimation accuracy under bright conditions and at greater distances.
- Exploring different methods for depth estimate aggregation.

References	More Information
 Ministry of Transport, "Pedestrian Crashes," 2018. [Online]. Available: https://www.transport.govt.nz/mot-resources/new-road-safety-resources/pedestrians/ WorkSafe New Zealand, "WorkSafe Fatalities Detail," 2019. [Online]. Available: https://worksafe.govt.nz/data-and-research/ws-data/fatalities/ WorkSafe New Zealand, "WorkSafe Fatalities Detail," 2019. [Online]. Available: https://worksafe.govt.nz/data-and-research/ws-data/fatalities/ L. Xia, C. Chen, and J. K. Aggarwal, "Human detection using depth information by Kinect," in CVPR 2011 WORKSHOPS, Jun. 2011, pp. 15–22. H. Hirschmuller, "Stereo Processing by Semiglobal Matching and Mutual Information," IEEE Transactions on Pattern Analysis and Machine Intelligent Robots and Systems, Sep. 2011, pp. 3388–3843. 	Image: Scan me github.com/adamtupper
 [4] Intel Corporation, "Depth Post-Processing for Intel RealSense D400 Depth Cameras," 2019. [Online]. Available: https://dev.intelrealsense.com/ docs/depth-post-processing [10] U. Sharma and R. Green, "Anti-Collision System for Pedestrian Safety," Computer Vision Lab, University of Canterbury, Tech. Rep., 2017. [11] J. Nimmo and R. Green, "Pedestrian Avoidance in Construction Sites," Computer Vision Lab, University of Canterbury, Tech. Rep., 2017. [12] A. Vit and G. Shani, "Comparing RGB-D Sensors for Close Range Outdoor Agricultural Phenotyping," Sensors (Basel, Switzerland), vol. 18, no. 12, puter Vision ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Springer International Publishing,2014, pp. 740–755. [13] Supervisely, "Supervisely - Web platform for computer vision. Annotation, training and deploy," 2018. [Online]. Available: https://supervise.ly/ 	