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Abstract—Deep reinforcement learning, the combination of
deep learning and reinforcement learning, has enabled the
training of agents that can solve complex tasks from visual inputs.
However, these methods often require prohibitive amounts of
computation to obtain successful results. To improve learning
efficiency, there has been a renewed focus on separating state
representation and policy learning. In this paper, we investigate
the quality of state representations learned by different types
of autoencoders, a popular class of neural networks used for
representation learning. We assess not only the quality of the
representations learned by undercomplete, variational, and disen-
tangled variational autoencoders, but also how the quality of the
learned representations is affected by changes in representation
size. To accomplish this, we also present a new method for
evaluating learned state representations for Atari games using
the Atari Annotated RAM Interface. Our findings highlight
differences in the quality of state representations learned by
different types of autoencoders and their robustness to reduction
in representation size. Our results also demonstrate the advantage
of using more sophisticated evaluation methods over assessing
reconstruction quality.

I. INTRODUCTION

Deep reinforcement learning (RL) has enabled us to train
agents directly from low-level observations of the environ-
ment, such as images [1]. However, improving the compu-
tational and sample efficiency of deep RL methods remains
an open challenge. These constraints limit the applicability
of using deep RL to solve real-world tasks, such as those in
robotics, and largely confines deep RL to video games and
tasks that can be modelled using simulations. To scale deep
RL beyond environments that can be simulated, a renewed
focus on state representation learning has emerged to enable
more efficient downstream RL.

In the context of RL, state representations are compact
descriptions of raw observations that preserve the important
information needed for the agent to chose its actions [2]. State
representation learning focuses on learning such state repre-
sentations independent of learning a controller and without
the supervision of the true state. Video games and simulations
are useful tools for evaluating state representation learning
methods because they allow easy access to the true state of
the environment. This allows us to compare the learned state
representations against the ground truth. For video games,

important state variables are typically the locations of the agent
and other objects, scores, and other game-specific information.

Autoencoders are a popular class of neural networks used
for state representation learning [3], [4]. They are trained to
learn low-dimensional representations of observations through
reconstruction, i.e. minimising the reconstruction error be-
tween original and reconstructed observations. However, re-
construction error is proxy measure for state representation
quality that is assumed to, but may not necessarily, align
with the desired goal to encode important state variables.
For example, minimising reconstruction error does not ensure
that the important state variables can be easily extracted from
the learned representation. Nor does it ensure that small, yet
potentially crucial details in the observation will be retained,
since they contribute little to the overall reconstruction error.

In this paper, we investigate the true quality of the state
representations learned by different types of autoencoders by
assessing the quality of learnt state representations for a set
of Atari games (one of the standard evaluation platforms
for RL). For our investigations, we assess the quality of
the encoding of important state variables for each game by
employing a novel evaluation method that probes the contents
of the learnt state representations using ground truth state
information provided by the Atari Annotated RAM Interface
[5]. Our evaluation method extends the original evaluation
method proposed alongside this interface. Our results highlight
the differences in the quality of state representations learned
by different types of autoencoders, and also how the quality
of the learned representations is affected by changes in rep-
resentation size. Our results also demonstrate that the quality
of reconstructions can deceive the quality of the underlying
state representation, highlighting the need for sophisticated
evaluation methods, such as the one we propose.

The remainder of this paper is organised as follows. Section
II provides an overview of the different types of autoencoders
assessed in this work and discusses different approaches for
evaluating state representation learning methods. Section III
describes our extensions to the approach for evaluating state
representation learning methods proposed in [5]. Section IV
describes the experimental setup used to evaluate the autoen-
coders. Section V presents the results of our experiments
and discusses the findings. Finally, Section VI presents our
conclusions.978-1-7281-8579-8/20/$31.00 c©2020 IEEE



II. BACKGROUND AND RELATED WORK

This section provides a brief overview of representation
learning through the use of autoencoders, followed by a
discussion of different techniques for evaluating learned state
representations. For a comprehensive review of research in
state representation learning, we direct readers to [2].

A. Autoencoders

Autoencoders are a class of neural networks that are trained
to learn low-dimensional representations of data. They consist
of two halves: an encoder and a decoder. The encoder learns
a function f(x) that maps an input vector x to a latent
space encoding or compressed representation z. The decoder
learns a function g(z) that maps the encoding z back to a
reconstruction of the input x̂. Setting the size of z less than
the size of x introduces an information bottleneck which forces
the network to learn to extract only the features of the data that
are most important for reconstruction. Autoencoders that rely
on this bottleneck alone to force the network to learn which
aspects of the data are important are known as undercomplete
autoencoders (AEs).

Variational autoencoders (VAEs) [6] use a statistical ap-
proach for learning compact encodings. They assume that
the training data is drawn from a distribution that can be
parameterised by a vector of latent variables z. They attempt
to learn a probability distribution for each latent variable,
through a process called variational inference. This contrasts
with undercomplete autoencoders that output a single value
for each latent variable. When decoding, we sample from each
distribution to generate a vector to serve as the input for the
decoder. An advantage of this approach is that by learning a
distribution for each latent variable, we force the encoder to
learn a smooth, continuous latent space representation of the
data, where similar observations should be located close to
each other in the latent space. VAEs are trained to minimise
a loss function consisting of the reconstruction error and the
KL divergence.

Disentangled variational encoders (β-VAEs) [7] introduce
a parameter β > 1 that assigns a higher weight to the KL
divergence term in the loss function. Greater penalisation
of the difference between the distributions places a larger
emphasis on ensuring that each latent variable encodes a
different attribute in the data. Prior work on the use of dis-
entangled variational autoencoders in reinforcement learning
environments has shown the benefits of state representations
where each latent variable encodes a different property of the
environment [3]. This may simplify the encoding and make
policy learning easier.

B. Evaluating Learned State Representations

A brute force approach for evaluating different state rep-
resentation learning methods is to train an agent to perform
a particular task using the representations learned by each
method. Although this approach has been commonly used
in the past [4], it can be a costly and inefficient use of
time and computation. Realistically, such an approach is only

possible for simple tasks where agents can be trained within
reasonable time. Furthermore, the choice of RL algorithm
used for training the agents may bias the results. It has been
regularly demonstrated that different types of algorithms, such
as value-based methods like Deep Q-Learning [1] and policy
gradient methods like Proximal Policy Optimisation [8], are
effective for different tasks, even within the same class of
problems, such as Atari games. A better approach to evaluating
state representation learning methods is to devise a method of
evaluation that is independent of the control algorithm applied
for the downstream RL task.

For state representation learning methods that learn by
reconstructing observations, one alternative to training agents
is to visually compare the quality of the reconstructions against
the original observations. However, as mentioned previously,
reconstruction quality does not necessarily align with represen-
tation quality from a policy learning perspective. Furthermore,
this approach can only be used to evaluate techniques that learn
by reconstructing observations. A similar but more general
approach is to visually compare the observations of nearest
neighbours in the learned state space to see if they en-
coder similar observations [9], [10]. k-nearest neighbour mean
squared error (KNN-MSE) [11] and normalisation independent
embedding quality assessment (NIEQA) [12] are quantitative
methods that perform more comprehensive evaluations in this
manner. These remove the need for manual checking.

A final approach is to “probe” the learned representations
by training small regression or classification models to predict
ground-truth data from learned representations [5], [13]. Al-
though this approach relies on access to ground truth data
for each environment, it allows for a much more detailed
evaluation of the information stored in the learned state repre-
sentations. Anand et al. [5] used such a method for evaluating
learned representations for Atari games using linear classifi-
cation probes (single layer neural networks). Jonschkowski et
al. [13] trained non-linear regression probes (neural networks
with three hidden layers) to predict the positions and velocities
of the cart and poles for pole balancing tasks.

Anand et al. [5] introduced the Atari Annotated RAM Inter-
face (AtariARI) to enable the evaluation of state representation
learning methods using Atari games. The AtariARI provides
RAM annotations for 22 Atari games supported by the OpenAI
Gym toolkit [14]. These annotations identify which of the 128
bytes of RAM store values related to information displayed on
screen, such as the position of the player. Through a wrapper
for the existing OpenAI Gym interfaces for each supported
Atari game, the RAM values for each state variable are made
available alongside the observation at each time step. They
proposed evaluating the quality of state representations using
the AtariARI by training a linear classifier (probe) for each
state variable that predicts the value using the condensed state
representations as input. The performance of the classifiers
give an indication of the quality of the encoding of each
variable. Furthermore, they assigned each state variable to
one of five categories (agent localisation, object localisation,
small object localisation, score/clock/lives, and miscellaneous)



to allow for comparisons between games by aggregating the
results within categories.

III. PROPOSED REPRESENTATION EVALUATION METHOD

Our state representation evaluation method extends the
probing method proposed by Anand et al. [5] by introducing
regression and non-linear probing. In the subsections we de-
scribe our motivation and implementation for these extensions.

A. Regression Probes

Anand et al. [5] formulate the task of predicting each state
variable as separate 256-way classification problem, as each
byte of RAM can represent 256 possible values, regardless of
the nature of each variable. While this makes aggregating the
results over all state variables for each game easier, it ignores
the ordinal nature of many of the variables. For instance, those
that store the positions of objects along the x or y axis of
the screen. When framing the tasks of predicting the values
of these variables as a classification problem, an off-by-one
error is equally as bad as an off-by-100 error. Given the
importance of localising objects for learning to play the game,
it is important that this information is evaluated as accurately
as possible. To address this issue, we propose using regression
probes for appropriate variables.

Examining the state variables for each of the games sup-
ported by the AtariARI, we found that approximately three
quarters of all variables are numerical, and thus better suited
to evaluation using regression rather than classification. Of
these variables, the vast majority fall under the localisation
categories. Furthermore, the localisation categories are the
only categories in which all the state variables for all games
are better suited for regression. Therefore, these are the only
categories that we evaluate using regression probes. Although
the majority of variables within the score/clock/lives category
would also be better evaluated using regression, this is not the
case for all games. For example, for games in which the scores
achieved by the agent and/or opponent are low, such as Pong,
the scores are stored using a single byte of RAM. However, for
games where the agent can achieve a higher score than 255,
such as Asteroids, the score is stored using multiple bytes of
RAM. Because the score is split between bytes, we cannot use
regression to evaluate these variables.

For regression, we require a similar metric to the F1 score
that is used for classification that can (a) provide a good
indication of predictive performance, and (b) be meaningfully
averaged within and across categories. For this, we use the
coefficient of determination, R2, between the predicted and
target values. The R2 value provides a good indication of
model fit and predictive power of the regression probes trained
for each state variable. It is defined as follows:

R2 = 1 −
∑

(y − ŷ)2∑
(y − ȳ)2

(1)

where y is the target value, ŷ the predicted value, and ȳ the
mean of the target values. An R2 value of one means that the
model (in this case our probe) is able to perfectly predict the

target values, whereas a value of zero indicates that the model
is unable to make good predictions. In this way, performance is
described similarly to the classification probes using accuracy
or F1 scores.

B. Non-Linear Probes

Our second proposed change is to train non-linear probes
instead of linear ones. The rationale behind this decision is
that the information on state variables may be compressed
in a non-linear manner that cannot be extracted using a
linear classifier/regressor. This may be particularly true as
the representation size is decreased and the compressors are
forced to compress the state information into a smaller vector.
While non-linear encoding introduces complexity, typical pol-
icy networks are sufficiently complex to learn from non-linear
data. Therefore, we should allow the evaluation method to be
flexible enough to account for this. We propose using a single
hidden layer in the probes, equal in size to the representation
(input layer) size as a good compromise between allowing for
too much non-linearity and not assessing the true content of the
representations. The nodes in the hidden layer used Rectified
Linear Unit (ReLU) nonlinearities.

IV. EVALUATING THE QUALITY OF STATE
REPRESENTATIONS LEARNED BY AUTOENCODERS

In this section, we describe our experimental setup and
procedure for comparing the quality of the representations
learned by different types of autoencoders with different
representation sizes, using our evaluation method described
in Section III.

A. Experimental Design

The goal of our experiment is to compare the quality of
the representations learned by different types of autoencoders
with varying representation sizes. We compare undercomplete
(AE), variational (VAE), and disentangled variational (β-VAE)
autoencoders. We train an autoencoder of each type with 10
different representation sizes in the range of 10 to 100 dimen-
sions, in increments of 10 dimensions. The architecture, with
the exception of the bottleneck, and training hyperparameters
are held constant for all models. We evaluate each model on a
set of four games: Asteroids, Boxing, Ms Pacman, and Pong.
These games were chosen because they are (a) very different
in appearance, (b) contain a wide range of objects of different
shapes and sizes, and (c) represent a range of complexity in
terms of their game states.

B. Autoencoder Architecture and Training

All of the autoencoders share the same encoder and decoder
architectures. The only difference between the architecture of
AE models and VAE and β-VAE models is the implementation
of the bottleneck. The decoder is symmetrical to the encoder.
The encoder architecture has five layers, all of which use 3 × 3
kernels. The first three layers learn 32 filters, while the last two
learn 64 filters. The flattened output of the final convolutional
layer is connected to a bottleneck of a particular size using a
final fully connected layer.
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Fig. 1. The results of our AtariARI evaluations. Each colour depicts the results for a different type of autoencoder: AE, VAE, β-VAE. The localisation
categories are measured using R2, while the remainder are measured using F1 scores.

The learning rate (1e−4), batch size (64), maximum number
of training epochs (50), and the KL divergence weighting, β
(4) for the β-VAE were chosen through informal experimen-
tation. We used early stopping with a patience of 10 epochs to
stop training early if performance plateaued. Each model was
trained using a dataset of 110,000 unique, full-size (210×160
px), greyscale gameplay images for each game. These im-
ages were split into 100,000 training and 10,000 validation
images. The images were collected by PPO agents trained
using the implementation provided by the Stable Baselines
reinforcement learning algorithm library [15]. Agents trained
using this algorithm were chosen because they are relatively
quick to train and have been shown to be very high performing
when trained to play Atari games [8]. We trained these agents
using the same hyperparameters used to obtain the original
PPO results. We used trained agents because they are able
to (a) collect a sufficient number of images, and (b) explore

more of the state space than random agents. The autoencoders
are trained to minimise the sum of squared errors (SSE)
reconstruction error measure, in addition to the KL divergence
in the case of the VAE and β-VAE models.

C. Probe Training

We trained the regression and classification probes follow-
ing the same procedure outlined by Anand et al. [5]. For each
game, we collected 45,000 unique frames and the values of the
state variables provided by the AtariARI at the corresponding
time step using the same trained PPO agents used to collect
the images for training the autoencoders. These images were
split into 35,000 training, 5,000 validation, and 10,000 test
images. A probe was trained for each state variable for each
game, using the Adam optimiser and a learning rate scheduler
with an initial learning rate of 5e−4. Each time the validation
plateaued for five epochs on the validation set, the learning



rate was decreased by a factor of 0.2, to a minimum of 1e−5.
Each probe was trained for a maximum of 100 epochs, but
with early stopping if the validation loss plateaued for 15
epochs. Classification probes used cross-entropy loss, whereas
regression probes used mean squared error loss. Following
training, each model was evaluated on the test set.

V. RESULTS

This section presents the results of our evaluations of the
state representations learned by different autoencoders.

A. AtariARI Evaluation Results

Fig. 1 presents the results of our evaluations of the quality of
the representations learned by different types of autoencoders
with different representation sizes.

We observed the most interesting patterns for Boxing and
Pong, the games with lowest number of state variables. For
Boxing, we observed that all types of autoencoders performed
similarly when learning positions of the agent and opponent,
with little degradation in representation quality as size de-
creased. However, all types of autoencoders showed a steep
decline in performance (most prominent for the position of
the agent) as representation size decreased from 20 to 10
dimensions. When learning the value of the clock, and the
player’s and opponent’s scores, the undercomplete autoencoder
did a far better job than the variational autoencoders, although
performance declined steadily as the representation size de-
creased. The VAE outperformed the β-VAE consistently.

For Pong, we observed much more pronounced differences
in performance between the different types of autoencoders,
and also different trends in performance as representation
size decreased. Once again, the undercomplete autoencoder
performed better than the VAE, and the VAE better than the β-
VAE. For agent and opponent (paddle) localisation, there was
little decline in performance until the representation size was
reduced to less than 40 dimensions. From that point onward,
the VAE performance dropped drastically, while the AE per-
formance more moderately. For ball localisation, we observed
a similar result to the Score/Clock/Lives category in Boxing.
For the Score/Clock/Lives category in Pong, performance for
both the AE and VAE models remained very high until the
representation size was decreased to 10 dimensions.

For Asteroids and Ms Pacman, games with far greater num-
bers of state variables and more visually complex observations,
all autoencoders performed far worse across the categories
of state variables. There was little consistent difference in
performance between the types of models. Performance was
best for both games in the Score/Clock/Lives category. For Ms.
Pacman, this was the only category in which there were clear
differences in the quality of representations between models.

The comparatively poor performance for all models in
Asteroids and Ms Pacman compared to Boxing and Pong
suggests that the increased complexity of the games hampered
performance across all categories of state variables. Although
AE models performed best overall, a somewhat surprising
result given the potential advantages offered by the VAE and

Fig. 2. Original and reconstructed images for Boxing, Asteroids, and Ms Pac-
man using different autoencoders, all learning 100-dimension representations.

β-VAE models, the variation in results between games makes
it difficult to identify categories that are particularly well suited
to any one architecture. Perhaps general trends would emerge
if the evaluations were performed for a larger set of games.

B. AtariARI Evaluations vs. Reconstructions

One of the most interesting results we observed was how
deceptive the reconstruction quality can be. In each game,
there were significant discrepancies between the AtariARI
results and the perceived quality of the representations based
on the reconstructions.

One of the best examples of this was the quality of the
reconstructions of the agent and opponent in Boxing (shown
in Fig. 2), compared to the middling AtariARI performance.
We observed that while all models were able to accurately re-
produce the positions of the agent and opponent, the R2 value
for the regression performance topped out at approximately
0.6. One plausible reason for this is that the information,
while clearly present in the compressed representations, was
too highly compressed even for the non-linear probe to extract
and process to a higher level. Furthermore, the AtariARI eval-
uation also shed greater light on situations where performance
appeared poor or indifferent between models based on recon-
structions alone. For example, the reconstructions of the scores
and clock in Boxing appeared equally poor between variational
and disentangled variational autoencoders, however, the values
were far the better encoded by the variational autoencoders.

For Pong, despite the reconstruction of the ball remaining
relatively clear and accurate for all undercomplete autoen-
coders, even when learning a representation of just 10 dimen-



Fig. 3. Original and reconstructed images for Pong using different undercom-
plete autoencoders (AEs). |Z| denotes the size of the learnt representations.

sions, as shown in Fig. 3, the AtariARI performance dropped
drastically as representation size was reduced. In addition, the
drastic drop in performance exhibited in the AtariARI results
for the score/clock/lives category when the representation size
dropped from 20 to 10 dimensions was not accompanied by
a noticeable drop in reconstruction quality.

For Asteroids, despite the fact that all models were able
to reproduce the positions and shapes of large asteroids, as
shown in Fig. 2, the AtariARI localisation results were poor.
Furthermore, although the undercomplete autoencoder with a
representation size of 100 dimensions was able to reproduce
the position of the agent and the positions and shapes of both
large and small asteroids, unlike the VAE and β-VAE models,
this is not reflected in the AtariARI results.

Finally, for Ms Pacman we again noticed that despite better
reconstructions (being able to consistently reconstruct the
positions of the agent and ghosts), the undercomplete autoen-
coder did not offer substantially better representations than the
VAE and β-VAE autoencoders when more comprehensively
evaluated using the AtariARI.

Overall, the results demonstrate that the AtariARI evalua-
tions provide a far more detailed breakdown of performance
than reconstructions alone. They also identified drops in rep-
resentation quality that would have gone otherwise unnoticed
if only the quality of the reconstructions were considered.

VI. CONCLUSIONS

In this paper, we investigated the quality of state represen-
tations learned by undercomplete, variational and disentangled
variational autoencoders for a set of Atari games. To evaluate
the quality of the learned representations we proposed and
utilised novel extensions to an evaluation method that probes
the representations using the AtariARI [5]. Our results demon-
strated the differences in representations learned by different
types of autoencoders and how representation size affects
the quality of representations for each type. Our results also
highlighted discrepancies between reconstruction quality and
the quality of the encoding of important state variables in the
learned representations, which illustrates the need for more
thorough evaluation methods, such as the one we proposed.
Overall, this work provides the most comprehensive evaluation
yet of the use of autoencoders for state representation learning.

A. Future Work
For future work, we have identified several promising av-

enues of improvement and investigation:
• Investigating why the differences in performance between

types of autoencoders exist.
• Comparing the performance of autoencoders against other

state representation learning techniques.
• Investigations using a wider set of games, and across

domains other than Atari games to build a holistic view
of the ability to learn state representations using autoen-
coders across a wide and varied range of environments.
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