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State Representation Learning

Goal: Learn to extract the important features ( “state variables™)
from raw observations (e.g. images).

Why? Poor sample efficiency limits the applicability of deep
reinforcement learning to real world problems (e.g. robotics).
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To address this inefficiency, there has been a renewed focus on
separated state representation and policy learning.



Our Research

Autoencoders are a popular method for state representation

learning, but the evaluations of the learned representations tend to
be primitive.

Our research:

1. presented a new method for evaluating learned state
representations by probing their contents.

2. investigated the quality of state representations learned by
undercomplete, variational, and disentangled variational
autoencoders for a range of representation sizes.



Evaluating Representation Quality via Probing

The state representations were evaluated by training non-linear
regression and classification “probes” to predict important state
variables from them.

This extended a probing method that was proposed alongside the
Atari Annotate RAM Interface!, which provided the target values.

L Anand et al., ‘Unsupervised State Representation Learning in Atari’, in Advances in Neural Information Processing Systems 32, Dec.
2019



Evaluating Representation Quality via Probing

» The Atari Annotated RAM Interface identifies the RAM
values of important state variables for each game.
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» The previous probing method did not take into account the
nature of each state variable (i.e. numeric or categorical).



Probing vs. Reconstructions: Regression
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Probing vs. Reconstructions: Regression
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Probing vs. Reconstructions: Classification
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Probing vs. Reconstructions: Classification
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Key Findings and Future Work

Our results:

» demonstrate the differences in representations learned by
different types of autoencoders, and assess their robustness to
representation size.

> highlight the discrepancies between evaluations using
reconstruction quality vs. probing.

Avenues for future work:
» Investigate why the differences in performance between the
types of autoencoders exist.
» Create a broader benchmark that contains both a wider set of
games and extends to other domains to more comprehensively
evaluated state representation learners.



Extra: A Comparison Between Probing Techniques for
Assessing the Encoding Quality of Player Y in Pong

Linear Class. Non-Linear Class.
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Extra: Reconstructions for all Games




Extra: Autoencoder Architecture
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» Fully convolutional encoder/decoder with five layers.

» Only difference between autoencoders was the bottleneck
layer(s).

» Learnt compact representations of full size (160 x 210 px),
greyscale images.



