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State Representation Learning

Goal: Learn to extract the important features (“state variables”)
from raw observations (e.g. images).

Why? Poor sample efficiency limits the applicability of deep
reinforcement learning to real world problems (e.g. robotics).
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To address this inefficiency, there has been a renewed focus on
separated state representation and policy learning.



Our Research

Autoencoders are a popular method for state representation
learning, but the evaluations of the learned representations tend to
be primitive.

Our research:

1. presented a new method for evaluating learned state
representations by probing their contents.

2. investigated the quality of state representations learned by
undercomplete, variational, and disentangled variational
autoencoders for a range of representation sizes.



Evaluating Representation Quality via Probing

The state representations were evaluated by training non-linear
regression and classification “probes” to predict important state
variables from them.
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This extended a probing method that was proposed alongside the
Atari Annotate RAM Interface1, which provided the target values.

1Anand et al., ‘Unsupervised State Representation Learning in Atari’, in Advances in Neural Information Processing Systems 32, Dec.
2019.



Evaluating Representation Quality via Probing

I The Atari Annotated RAM Interface identifies the RAM
values of important state variables for each game.
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I The previous probing method did not take into account the
nature of each state variable (i.e. numeric or categorical).



Probing vs. Reconstructions: Regression



Probing vs. Reconstructions: Regression
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Probing vs. Reconstructions: Classification



Probing vs. Reconstructions: Classification
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Key Findings and Future Work

Our results:
I demonstrate the differences in representations learned by

different types of autoencoders, and assess their robustness to
representation size.

I highlight the discrepancies between evaluations using
reconstruction quality vs. probing.

Avenues for future work:
I Investigate why the differences in performance between the

types of autoencoders exist.

I Create a broader benchmark that contains both a wider set of
games and extends to other domains to more comprehensively
evaluated state representation learners.



Extra: A Comparison Between Probing Techniques for
Assessing the Encoding Quality of Player Y in Pong
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Extra: Reconstructions for all Games



Extra: Autoencoder Architecture
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I Fully convolutional encoder/decoder with five layers.

I Only difference between autoencoders was the bottleneck
layer(s).

I Learnt compact representations of full size (160 × 210 px),
greyscale images.


